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a b s t r a c t

The aim of the present paper is the development of an efficient numerical algorithm for the
solution of magnetohydrodynamics flow problems for regular and irregular geometries
subject to Dirichlet, Neumann and Robin boundary conditions. Toward this, the meshless
point collocation method (MPCM) is used for MHD flow problems in channels with fully
insulating or partially insulating and partially conducting walls, having rectangular, circu-
lar, elliptical or even arbitrary cross sections. MPC is a truly meshless and computationally
efficient method. The maximum principle for the discrete harmonic operator in the mesh-
free point collocation method has been proven very recently, and the convergence proof for
the numerical solution of the Poisson problem with Dirichlet boundary conditions have
been attained also. Additionally, in the present work convergence is attained for Neumann
and Robin boundary conditions, accordingly. The shape functions are constructed using the
Moving Least Squares (MLS) approximation. The refinement procedure with meshless
methods is obtained with an easily handled and fully automated manner. We present
results for Hartmann number up to 105. The numerical evidences of the proposed meshless
method demonstrate the accuracy of the solutions after comparing with the exact solution
and the conventional FEM and BEM, for the Dirichlet, Neumann and Robin boundary con-
ditions of interior problems with simple or complex boundaries.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Poisson, Helmholtz, and diffusion–convection equations are fundamental modeling components of the behavior of several
physical phenomena and industrial processes. In order to solve these physical problems, governed by partial differential equa-
tions, researchers and scientists have proposed various approximations. One generally accepted route for obtaining numerical
solutions to these partial differential equations is the application of the finite element method (FEM). Although FEM has a key
advantage over other numerical methods in that it can handle arbitrary problem geometries, it usually requires a body-fitted
mesh. FEM users usually have to write their own mesh generation programs, a process far more difficult and time-consuming
than the solvers of the FEM programs [1], due to the shortage of a universally accepted mesh generation program that is effi-
cient, freely available, and capable of generating 2D, 3D, and 4D (time-varying) meshes. In order to avoid body-fitted mesh
generation, a meshless method such as the meshless point collocation method (MPCM) may be used alternatively.
. All rights reserved.
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Meshless methods provide a viable alternative to grid-based flow computation since they do not require conventional
grid structures, alleviating many issues related to grid generation. Instead of relying on stencils, elements, or control vol-
umes, meshless methods make use of point clouds to discretize the mathematical equations governing incompressible flow.
The meshless numerical method has become an attractive alternative to the finite element (FEM) and the boundary element
method (BEM) due to its inherent advantage of avoiding meshing and remeshing, the efficient treatment of complicated load
conditions and, thus, avoiding mesh distortion in large deformation problems. Furthermore, the refinement procedure with
meshless methods is obtained with an easily handled and fully automated manner.

The meshless method is usually divided into two main categories: the boundary-type meshless method, and the domain-
type meshless method. Herein, the latter procedure is adopted. Recent works have indicated that highly accurate results may
be obtained with meshless methods, as compared to grid-based methods [1,2]. Over the last years, several meshless methods
have been proposed, as the Smoothed Particle Hydrodynamics (SPH) [3], the Diffuse Element Method (DEM) [4], the Element
Free Galerkin method (EFG) [5], the Reproducing Kernel Particle Method (RKPM) [6,7], the Partition of Unity Finite Element
method (PUFEM) [8], the h–p Clouds [9], the Moving Least-Square Reproducing Kernel method (MLSRK) [10], the meshless
Local Boundary Integral Equation method (LBIE) [11], the Meshless Local Petrov–Galerkin method (MLPG) [12], meshless
point collocation methods using reproducing kernel approximations [13], the Merhod of Fundamental Solutions (MFS)
[14], the Method of Particular Solutions (MPS) [15] and more. In the present work we imply the MPC method for the solution
of equations that describe the MHD flow. The construction of approximation functions can be performed entirely in terms of
point locations using the Moving Least Squares (MLS) method. The discretization of the domain of interest is accomplished
using a set of scattered points, and the shape functions are established at the global level without the requirement of any
mesh.

Incompressible magnetohydrodynamics (MHD) describes the flow of a viscous, incompressible and electrically conduct-
ing fluid. The governing partial differential equations are obtained by coupling the incompressible Navier–Stokes equations
with Maxwell’s equations. The aforementioned equations arise in several engineering applications, such as, for example, li-
quid metals in magnetic pumps or aluminum electrolysis. The magnetohydrodynamic flow problems through ducts are fre-
quently encountered in nuclear reactors and magnetohydrodynamic generators, as well as in pumps and accelerators. Also,
direct links of magnetohydrodynamic with medicine comprise blood flow measurements and magnetic occlusion of arterial
aneurysms [16–20].

Due to the coupling of the equations of fluid mechanics and electrodynamics, exact solutions are available solely for some
simple geometries under very simple boundary conditions [19]. Therefore, several numerical techniques, such as the finite
Fig. 1. Square channel flow with external applied magnetic field.
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difference method (FDM) [20], the finite element method (FEM) [21–23], the boundary element method (BEM) [18], and the
fundamental solution method [19] have been used to obtain approximate solutions for MHD flow problems. In most cases,
results were obtained for small (<100) and moderate (>100 and <1000) Hartmann numbers, while in [22] results were ob-
tained for Hartmann numbers up to 105. Nevertheless, various types of difficulties are referred in regard to very fine meshes
for large values of Hartmann number, which is computationally very expensive, memory and time-consuming.

In recent years, research on meshless (meshfree) methods has made significant progress in science and engineering, par-
ticularly in the area of computational mechanics. In the present paper, our aim is to establish the MPCM solution of MHD
duct flow equations for large values of Hartman number in the original coupled form, which are of the convection–diffusion
type. The present work transforms the MHD differential equations into the discretized matrix–vector form Lu ¼ f , where the
matrix operator L contains the derivative operators appearing in the MHD flow equations, and solves the resulting sparse
discretized equations directly. The meshless point collocation method is used for MHD flow problem in channels with insu-
lating walls or partial insulating and partial conducting walls, having rectangular, circular, elliptical or arbitrary cross sec-
tions. Despite the numerical efficiency and the implementation benefits of the meshless point collocation method, the
maximum principle for the discrete harmonic operator [24], and the convergence proof for the numerical solution of the
Poisson problem with Dirichlet boundary conditions have been attained for this method just recently. Additionally, in the
Fig. 2. The Gaussian weight functions: (a) W ½ð0;0Þ�
I , (b) W ½ð1;0Þ�

I , (c) W ½ð0;1Þ�
I , (d) W ½ð2;0Þ�

I , and (e) W ½ 0;2ð Þ�
I .
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present work convergence is attained for Neumann and Robin boundary conditions, accordingly, using suitable node distri-
butions [24]. To this end, a smart local refinement procedure for additional nodes insertion at each site, in relation to an error
indicator is used here for the improvement of the numerical accuracy with respect to these convergence conditions. Four
cases with varying magnetic field and boundary conditions on the walls for a rectangular duct are considered in the present
work. Results for regular geometries and large values of Hartmann number (up to 105Þ, as well as for irregular geometries,
are presented.

2. Problem formulation
A steady, laminar, fully developed flow of a viscous, incompressible and electrically conducting fluid in a straight thin-
walled duct is assumed. The fluid is subject to a constant and uniformly applied magnetic field, imposed in the x-direction
with a constant axial pressure gradient, �j. The equations governing the steady flow are [23]:
v � rv ¼ � 1
q
rpþ vr2v þ 1

q
j� B; ð2:1Þ

r � v ¼ 0; ð2:2Þ
j ¼ r�H ¼ r �rF þ v � Bð Þ; ð2:3Þ
r � B ¼ 0; B ¼ lH; ð2:4Þ
where v is the velocity, p is the pressure, v is the kinetic viscosity, q is the density, j is the current, B is the magnetic induc-
tion, H is the magnetic field, F is the electric potential, r is the conductivity of the fluid, and l is the permeability.

For the case where (i) v ¼ ð0;0;uÞ;B ¼ lH0;0;Bð Þ, (ii) there is no variation in the z-direction except for the pressure gra-
dient �j, and (iii) the duct cross-section has a typical dimension a, the equations may be written in non-dimensional form
as:
r2uþM
@B
@x
¼ �1; ð2:5Þ

r2BþM
@u
@x
¼ 0; in X: ð2:6Þ
The non-dimensionalization of Eqs. (2.5) and (2.6) was performed with the aid of suitable non-dimensional variables [23].
The Hartmann number M appearing in (2.5) and (2.6) is given by M ¼ aB0

ffiffiffiffiffiffiffiffiffiffiffiffi
r=qv

p
, where B0 is the intensity of the applied

magnetic field. The velocity on the walls, @X, satisfies the no-slip boundary condition u ¼ 0, while B ¼ 0 on @X ensures that
the walls of the duct are insulating.
Fig. 3. Support domain.



Table 1
The flow field and the magnetic field at M ¼ 100.

x y Uh (FEM) Us (MPCM) Ubest Bh (FEM) Bh (MPCM) Bbest

0.00 0.00 0.0100000 0.0099998 0.0100000 0.0000000 0.0000001 0.0000000
0.25 0.00 0.0100000 0.0099998 0.0100000 �0.0025000 �0.0024999 �0.0025000
0.50 0.00 0.0100000 0.0099998 0.0100000 �0.0050000 �0.0049999 �0.0050000
0.75 0.00 0.0100000 0.0100000 0.0100000 �0.0075000 �0.0075001 �0.0075000
0.00 0.25 0.0100000 0.0100000 0.0100000 0.0000000 0.0000000 0.0000000
0.25 0.25 0.0100000 0.0099999 0.0100000 �0.0025000 �0.0024999 �0.0025000
0.50 0.25 0.0099999 0.0099999 0.0100000 �0.0050000 �0.0049998 �0.0050000
0.75 0.25 0.0099999 0.0100002 0.0099999 �0.0074999 �0.0075003 �0.0074999
0.00 0.50 0.0099993 0.0099992 0.0099992 0.0000000 0.0000002 �0.0000000
0.25 0.50 0.0099983 0.0099982 0.0099981 �0.0024984 �0.0024977 �0.0024982
0.50 0.50 0.0099947 0.0097651 0.0099944 �0.0049947 �0.0049944 �0.0049944
0.75 0.50 0.0099873 0.0097187 0.0099868 �0.0074873 �0.0074877 �0.0074868
0.00 0.75 0.0097662 0.0095878 0.0097614 0.0000000 �0.0000010 0.0000000
0.25 0.75 0.0097209 0.0099947 0.0097163 �0.0023043 �0.0023045 �0.0023030
0.50 0.75 0.0095898 0.0099879 0.0095858 �0.0046050 �0.0046042 �0.0046024
0.75 0.75 0.0093899 0.0093882 0.0093863 �0.0068903 �0.0068914 �0.0068869

Table 2
The flow field and the magnetic field at M ¼ 500.

x y Uh (FEM) Us (MPCM) Ubest Bh (FEM) Bh (MPCM) Bbest

0.00 0.00 0.0020000 0.0019999 0.0020000 0.0000000 0.0000000 0.0000000
0.25 0.00 0.0020000 0.0019999 0.0020000 �0.0005000 �0.0004999 �0.0005000
0.50 0.00 0.0020000 0.0019999 0.0020000 �0.0010000 �0.0009999 �0.0010000
0.75 0.00 0.0020000 0.0020000 0.0020000 �0.0015000 �0.0015000 �0.0015000
0.00 0.25 0.0020000 0.0020000 0.0020000 0.0000000 �0.0000000 0.0000000
0.25 0.25 0.0020000 0.0020000 0.0020000 �0.0005000 �0.0005000 �0.0005000
0.50 0.25 0.0020000 0.0020000 0.0020000 �0.0010000 �0.0010000 �0.0010000
0.75 0.25 0.0020000 0.0019999 0.0020000 �0.0015000 �0.00150000 �0.0015000
0.00 0.50 0.0020000 0.0019999 0.0020000 �0.0000000 0.0000000 0.0000000
0.25 0.50 0.0020000 0.0019999 0.0020000 �0.0005000 �0.0004999 �0.0005000
0.50 0.50 0.0020000 0.0019999 0.0020000 �0.0010000 �0.0010000 �0.0010000
0.75 0.50 0.0020000 0.0019999 0.0020000 �0.0015000 �0.0015000 �0.0015000
0.00 0.75 0.0020000 0.0020001 0.0020000 0.0000000 �0.0000001 0.0000000
0.25 0.75 0.0019999 0.0020000 0.0019999 �0.0005000 �0.0005001 �0.0004999
0.50 0.75 0.0019998 0.0019998 0.0019997 �0.000998 �0.0009998 �0.0009997
0.75 0.75 0.0019994 0.0019991 0.0019992 �0.0014994 �0.0014993 �0.0014992

Fig. 4. Equivelocity lines and induced magnetic field lines for M = 100 and / ¼ p
2 in rectangular duct without local refinement, (u, max = 0.0100000, min = 0

and B, max = 0.0095287, min = �0.0095287).
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For the case where a constant and uniform oblique magnetic field is applied, the coupled system of equations in the veloc-
ity and magnetic field can be put in the following non-dimensional form [19]
Fig. 5.
and B, m

Fig. 6.
and B, m
r2uþMx
@B
@x
þMy

@B
@y
¼ �1; ð2:7Þ

r2BþMx
@u
@x
þMy

@u
@y
¼ 0; in X: ð2:8Þ
Hartmann number M is the norm of the vector M ¼ ðMx;MyÞ. The fluid is driven down the duct by means of a constant pres-
sure gradient. The applied magnetic field of intensity B0 acts in a direction lying in the xy-plane but forming an angle / with
y-axis. The components of the vector M take the form
Mx ¼ M sinu;
My ¼ M cosu; ð2:9Þ
In general, the boundary conditions can be expressed as
u ¼ up on @X ðDirichlet ðessentialÞ boundary conditionsÞ;
B ¼ Bp on Cu ðDirichlet boundary conditionsÞ;
Equivelocity lines and induced magnetic field lines for M = 500 and / ¼ p
2 in rectangular duct without local refinement, (u, max = 0.0020010, min = 0

ax = 0.00192287, min = �0.00192287).

Equivelocity lines and induced magnetic field lines for M = 1000 and / ¼ p
2 in rectangular duct without local refinement, (u, max = 0.0010001, min = 0

ax = 0.000950087, min = �0.000950087).
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@B
@n
¼ t on Ct ðNeumann ðnaturalÞ boundary conditionsÞ;
where @X ¼ Cu [ Ct is the boundary of X with Cu \ Ct ¼ ;. Cu and Ct are the insulating and conducting parts of the boundary
@X, respectively. n is the vector of unit outward normal at a point on the natural boundary.

In total, we consider four cases: a rectangular duct with insulating walls (Case 1); a rectangular duct with insulating walls,
under the influence of an oblique magnetic field (Case 2); a rectangular duct with partly insulating, partly conducting walls
(Case 3); and a rectangular duct with partly insulating, partly conducting walls, under the influence of an oblique magnetic
field (Case 4). All these cases are presented in Fig. 1.

3. Numerical method

3.1. Moving least squares approximation

Let uðxÞ be the unknown function of the field variable defined in the domain X. The function uhðxÞ is the approximation of
function uðxÞ at point x. The field function is defined using the Moving Least Squares (MLS) approximation as
Fig. 7. Equivelocity lines for M = 100 and / ¼ p
2 ;

p
3 ;

p
4 in rectangular duct without local refinement.
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uhðxÞ ¼
Xm

i¼0

piðxÞaiðxÞ � pTðxÞaðxÞ; ð3:1Þ
where pðxÞ is a vector of n nodal values (in the present study the monomials up to 2nd order are used,
pT ¼ ½1 x y x2 xy y2�Þ; m is the number of terms of monomials (polynomial basis), and aðxÞ is a vector of coefficients given by
aTðxÞ ¼ a0ðxÞ a1ðxÞ . . . amðxÞf g;

which are functions of x.

Given a set of n nodal values, of a field function u1;u2; . . . ;un, at n nodes x1; x2; . . . ; xn inside the support domain, Eq. (3.1)
can be used for the calculation of the approximated values of the field function at these nodes:
uhðx; xiÞ ¼ pTðxiÞaðxÞ i ¼ 1;2;3; . . . ;n: ð3:2Þ
The coefficients a are calculated by the minimization of the quadratic functional JðxÞ given by
JðxÞ ¼
Xn

i¼1

W x� xið Þ
Xm

j¼1

pT
j xið ÞaðxÞ � ui

" #2

;

where W x� xið Þ is a weight function.
Fig. 8. Induced magnetic field lines for M = 100 and / ¼ p
2 ;

p
3 ;

p
4 in rectangular duct without local refinement.
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The minimization conditions require @J=@a ¼ 0, which results in the following linear equation system:
AðxÞaðxÞ ¼ BðxÞUs; ð3:3Þ
where A is the (weighted) moment matrix, expressed by
AðxÞ ¼
Xn

i¼1

WiðxÞpðxÞpT xið Þ; WiðxÞ �W x� xið Þ:
In Eq. (3.3), matrix B has the form BðxÞ ¼ B1;B2; . . . ;Bn½ �, where Bi ¼WiðxÞp xið Þ and Us is the vector that collects the nodal
parameters of the field variables for all the nodes in the support domain
Us ¼ u1;u2; . . . ;unf gT :
After solving Eq. (3.3) for aðxÞ, one gets
aðxÞ ¼ A�1ðxÞBðxÞUs:
Fig. 9. Equivelocity lines for M = 500 and / ¼ p
2 ;

p
3 ;

p
4 in rectangular duct without local refinement.
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Substitution of last equation in (3.1) leads to
uhðxÞ ¼
Xn

i¼1

Xm

j¼1

pjðxÞ A�1ðxÞBðxÞ
� �

ji
ui or uhðxÞ ¼

Xn

i¼1

UiðxÞui;
where the Moving Least Squares shape function UiðxÞ is defined by
UiðxÞ ¼
Xm

j¼1

pjðxÞ A�1ðxÞBðxÞ
� �

ji
¼ pT A�1Bi:
We have to note that m is the number of the monomial terms of the polynomial basis pðxÞ, and n is the number of nodes in
the support domain, which are used for constructing the shape function. Moreover, the requirement n� m must be fulfilled
for the moment matrix A to be invertible [25].

In order to obtain the spatial derivatives of the approximation function uhðxÞ, it is necessary to obtain the derivatives of
the MLS shape functions UiðxÞ,
@

@x
uhðxÞ ¼ @

@x

Xn

i¼1

UiðxÞui ¼
Xn

i¼1

@

@x
UiðxÞ

� �
ui; x ¼ x; y; z:
Fig. 10. Induced magnetic field lines for M ¼ 500 and / ¼ p
2 ;

p
3 ;

p
4 in rectangular duct without local refinement.
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The derivative of the shape function is given as
Ui;xðxÞ ¼ pT A�1Bi

� �
;x
¼ pT

;xA�1Bi þ pT A�1
� �

;x
Bi þ pT A�1 Bið Þ;x;
where A�1
� �

;x
¼ �A�1ðxÞAðxÞA�1ðxÞ and comma on the subscript designates a partial derivative with respect to the indicated

spatial variable. Regarding the second order derivative of the unknown function one gets
Uii;xðxÞ ¼ Ui;x Ui;xðxÞ
� �

¼ Ui;x pT
;xA�1Bi þ pT A�1

� �
;x

Bi þ pT A�1 Bið Þ;x
	 


¼ pT
;xxA�1Bi þ pT

;x A�1
� �

;x
Bi þ pT

;xA�1 Bið Þ;x
	 


þ pT
;x A�1
� �

;x
Bi þ pT

;x A�1
� �

;xx
Bi þ pT

;x A�1
� �

;x
Bið Þ;x

	 


þ pT
;xA�1 Bið Þ;x þ pT A�1

x Bið Þ;x þ pT A�1
x Bið Þ;xx

� �
;

where x ¼ x; y; z and A�1
� �

;xx
¼ � A�1

� �
;x

AA�1 � A�1A;xA�1 � A�1A A�1
� �

;x
.

Fig. 11. Equivelocity lines for M ¼ 1000 and / ¼ p
2 ;

p
3 ;

p
4 in rectangular duct without local refinement.
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3.2. Weight function

The weight function is non-zero over a small neighborhood of xi, called the support domain of node i. The choice of the
weight function W x� xið Þ affects the resulting approximation uh xið Þ significantly. In the present paper a Gaussian weight
function is used [25,26], Fig. 2, yet the support domain does not have a standard point density value. Instead, a constant
number of nodes are used for the approximation of the field function (Fig. 3).
W x� xið Þ �W d
� �

¼ e
� dI

a

� �2

0

8<
:

9=
;;
where I ¼ 1;2;3; . . . ; q are the nodes that produce the support domain of node xi, and d ¼ x�xij j
a2

0
with a0 a prescribed constant

(often a0 ¼ 0:3).

3.3. System equation discretization

The Meshless Point Collocation method is a MFree ‘‘strong-form” description method. In these methods the ‘‘strong-form”
description of the governing equations and the boundary conditions are used and they are discretized by collocation tech-
Fig. 12. Induced magnetic field lines for M ¼ 1000 and / ¼ p
2 ;

p
3 ;

p
4 in rectangular without local refinement.
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niques. The MFree strong-form methods possess the following attractive advantages. They are truly meshless and the imple-
menting procedure is straightforward, while the algorithms and the implementation can be kept simple, particularly when
handling problems with Dirichlet boundary conditions only. Under these conditions, these methods are highly computation-
ally efficient, even with polynomial approximation functions, and the solution can be systematically obtained with increased
accuracy, compared to FEM, FDM, or other CFD methods. In general, MFree strong-form methods may still suffer from some
local stability and accuracy issues, depending on the problem [25]. However, these local restrictions are now systematically
avoided with the utilization of Type-I nodal distribution and proper local point cloud refinement procedures, in accordance
with [24,26], even for natural or mixed type boundary conditions.

Collocation method using MLS may be considered as a special case of the ‘‘weak-form” methods [27]. Moreover, this col-
location method may be considered as a ‘‘weak-solution”, with a Dirac delta function as the test (weight) function [28,29].
The weighted residual method provides a flexible mathematical framework for the construction of a variety of numerical
solution schemes for the differential equations arising in the field of both science and engineering. Its application, in con-
junction with the Moving Least Square (MLS) approximation method, yields powerful solution algorithms for the governing
equations.
Fig. 13. Equivelocity lines for M = 1000, / ¼ p
2 ; L ¼ 0:2;0:5; 0:7 in rectangular duct without local refinement.
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Considering our problem (Case 1) governed by the differential equations
r2uþM
@B
@x
¼ �1 ¼ f1; ð3:4Þ

r2BþM
@u
@x
¼ 0 ¼ f2; in X: ð3:5Þ
The boundary conditions in the first case can be expressed as u ¼ up on @X;B ¼ Bp on Cu and @B
@n ¼ t on Ct , studied over the

domain X, which is a sufficiently smoothed, closed, and surrounded by a continuous boundary @X ¼ Cu [ Ct . In Eqs. (3.4) and
(3.5), uðx; yÞ and Bðx; yÞ are the dependent variables of the problem (functions of independent spatial variables), up and Bp are
the prescribed value of the unknown functions over the boundary @X and Cu, while f1; f2 and t are the forces and the source or
sink terms acting over the domain X and the boundary Ct , respectively. In the absence of an exact analytical solution for Eqs.
(3.4) and (3.5), one may seek to represent the field variables uðx; yÞ and Bðx; yÞ approximately as
uhðxÞ ¼
Xn

i¼1

UiðxÞui BhðxÞ ¼
Xn

i¼1

UiðxÞBi: ð3:6Þ
ui and Bi are two sets of coefficients (constants), which are the nodal unknowns, whereas Ui represent a set of geometrical
functions, usually called shape functions. Accuracy and convergence of the defined approximation will depend on the
Fig. 14. Induced magnetic field lines for M ¼ 1000;/ ¼ p
2 ; L ¼ 0:2;0:5; 0:7 in rectangular duct without local refinement.
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selected basis functions and (as a rule of thumb) these functions should be chosen in a way that the approximation gradually
becomes more accurate as m increases. Substitution of Eq. (3.6) into Eqs. (3.4) and (3.5) gives
r2uh þM
@Bh

@x
� f1 ¼ R1;X; ð3:7Þ

r2Bh þM
@uh

@x
� f2 ¼ R2;X; ð3:8Þ
where R1;X and R2;X are the residuals that appear through the insertion of an approximation instead of an exact solution for
the unknown functions uðx; yÞ and Bðx; yÞ.

The residuals R1;X and R2;X are a function of position inside X. The weighted residual method is based on the minimization
of the residuals over the entire domain. For this minimization procedure to be achieved the residuals are weighted by an
appropriate number of position-dependent functions and a summation is carried out. The latter is written
Z

X
WiR1;XdX ¼ 0; i ¼ 1;2;3; . . . ;n; ð3:9ÞZ

X
WiR2;XdX ¼ 0; i ¼ 1;2;3; . . . ;n; ð3:10Þ
Fig. 15. Equivelocity lines for M = 1000, / ¼ p
3 ; L ¼ 0:2;0:5; 0:7 in rectangular duct local refinement.
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where Wi are the independent weight functions and dX is an appropriate integration interval. Applying the weighted resid-
ual method to the above equations one gets
Z

X
Wi r2uh þM

@Bh

@x
� f1

 !
dXþ

Z
X

Wi r2Bh þM
@uh

@x
� f2

	 

dXþ

Z
@X

Wi
@X uh � up
� �

d@X

þ
Z

Cu

Wi
Cu Bh � Bp

� �
dCu þ

Z
Ct

Wi
Ct

@Bh

@n
� t

 !
dCt ¼ 0; ð3:11Þ
with the weighted functions Wi;W
@X
i ;WCu

i ;WCt
i defined in appropriate ways. Theoretically, the above equation should pro-

vide a system
Ku ¼ f ð3:12Þ

of n linear equations to be solved, in order to calculate the coefficients ui and Bi in Eq. (3.6).

In cases where Wi � di; di being the Dirac delta function, Eqs. (3.9) and (3.10) can be written:
r2uh
i þM

@Bh
i

@x
¼ �1 ¼ f1; ð3:13Þ

r2Bh
i þM

@uh
i

@x
¼ 0 ¼ f2; i 2 X: ð3:14Þ
Fig. 16. Induced magnetic field lines for M ¼ 1000, / ¼ p
3 ; L ¼ 0:2; 0:5;0:7 in rectangular duct without local refinement.
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The boundary conditions in the first case can be expressed as
uh
j ¼ up j 2 @X;

Bh
k ¼ Bp; k 2 Cu

@Bh
g

@n ¼ t; g 2 Ct:
leading to a linear system of the form Lu ¼ f , where the matrix operator L contains the derivative operators appearing in the
MHD flow equations.

4. Results and discussion
4.1. Rectangular duct

Numerical experiments have been performed for a viscous, incompressible and electrically conducting fluid, flowing in
the z-direction along a duct which has either a rectangular, a circular, an elliptical, or an arbitrary cross-section in the xy-
plane. Through its passage it is subjected to a constant and uniform magnetic field B0 aligned onto the xy-plane. Thus,
Fig. 17. Equivelocity lines for M = 1000, / ¼ p
4 ; L ¼ 0:2;0:5; 0:7 in rectangular duct without local refinement.
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the problem is a two-dimensional MHD flow problem and the z-components of the velocity and induced magnetic field are
uðx; yÞ and Bðx; yÞ, respectively.

First, the MHD duct problem is solved in a duct with a square cross-section. The domain and the boundary of the square
region jxj 6 1; jyj 6 1ð Þ are discretized using node distribution of Type I [22,24]. The Hartmann number M ranges from small
ðM ¼ 5Þ to moderate ðM ¼ 500Þ and to large values (M ¼ 104 up to 105Þ, while the number of the nodes ranges approxi-
mately from 103 to 104, without using refinement procedures. Eqs. (2.5) and (2.6) or (2.7) and (2.8) clearly resemble the con-
vection–diffusion equations. Thus, when the Hartmann number M increases, the convection term is dominant, and, thus,
boundary layers are emerging. Local refinement by the proper addition of interstitial nodes near those points where
Lu� fj j < r; r being a predefined small number (e.g. r ¼ 10�5Þ, makes the solution stable, accurate, and fast converging.

Herein, we present four characteristic test cases, each with varying boundary conditions.
Case 1: Duct with insulating walls
For the case of a rectangular duct with a square cross section jxj 6 1; jyj 6 1ð Þ, subjected to a magnetic field in the x-direc-

tion (i.e. / ¼ p=2Þ, the MHD flow equations are given from Eqs. (2.5) and (2.6). The walls of the duct are insulating ðB ¼ 0Þ
and the velocity is zero on the solid walls ðu ¼ 0Þ. Coupled Eqs. (2.5) and (2.6) are expressed in matrix differential operator
form Lu ¼ f , where
Fig. 18. Induced magnetic field lines for M = 1000, / ¼ p
4 ; L ¼ 0:2; 0:5; 0:7 in rectangular duct without local refinement.



Fig. 19
max = 1

Fig. 20
max = 1

G.C. Bourantas et al. / Journal of Computational Physics 228 (2009) 8135–8160 8153
L ¼
r2 M @

@x

M @
@x r2

" #
; u ¼

u

B

� �
; f ¼

�1
0

� �
;

and the corresponding algebraic approximation operator using Moving Least Squares function UiðxÞ (shape function) formu-
lation can be written:
L ¼
U2

xx þU2
yy MUx

MUx U2
xx þU2

yy

" #
; u ¼

u

B

� �
; f ¼

�1
0

� �
;

for any point of the domain X.
In Tables 1 and 2 the approximate solution of the meshless point collocation method is compared with the exact solution

[30] and the numerical solution obtained with the finite element method [22] using the residual-free bubble functions, for
Hartmann numbers 100 and 500, respectively, at several grid points.

In Figs. 4–6 we present velocity and magnetic field contours for M ¼ 100;500; or 1000, for / ¼ p
2 in a rectangular duct

without local refinement. Results are in accordance with the corresponding in [18,19,22].
Case 2: Duct with insulating walls, under the influence of an oblique magnetic field
In this case the MHD flow problem is subjected to an externally oblique magnetic field having a positive angle / with the

y-axis and is described from Eqs. (2.7) and (2.8). Duct has a square cross section jxj 6 1; jyj 6 1ð Þ with the typical boundary
. Equivelocity lines and induced magnetic field lines for M ¼ 104;/ ¼ p
2 and L ¼ 0:2 in rectangular duct without local refinement, (u,

.009132E�04, min = 0 and B, max = 2.00469E�04, min = �2.00469E�04).

. Equivelocity lines and induced magnetic field lines for M ¼ 104;/ ¼ p
2 and L ¼ 0:5 in rectangular duct without local refinement, (u,

.009132E�04, min = 0 and B, max = 2.00469E�04, min = �2.00469E�04).
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conditions u ¼ B ¼ 0 applied on the walls. Following the previous analysis, the coupled Eqs. (2.7) and (2.8) are again ex-
pressed in matrix differential operator form, Lu ¼ f , where
Fig. 21
refinem
L ¼
r2 Mx

@
@xþMy

@
@y

Mx
@
@xþMy

@
@y r2

2
4

3
5; u ¼

u

B

� �
; f ¼

�1
0

� �
;

and, thus, in Moving Least Squares functions UiðxÞ (shape function) formulation
L ¼
U2

xx þU2
yy MxUx þMyUy

MxUx þMyUy U2
xx þU2

yy

" #
; u ¼

u

B

� �
; f ¼

�1
0

� �
:

In Figs. 7–12 we present velocity and magnetic field contours for M ¼ 100;500; or 1000 and / ¼ p
2 ;

p
3 ;

p
4 in a rectangular duct

without local refinement. The results are in a good agreement with those obtained in [18,19].
Case 3: Duct with partly insulating, partly conducting walls
We solve the MHD equations subjected to an external magnetic field B0 in the direction of x-axis in a rectangular duct

with a cross section jxj 6 1; jyj 6 1ð Þ. Moreover, the rectangular duct has a conducting portion on x ¼ 0 line for a length L
. (a) Nodal distribution, without refinement and with local refinement in rectangular duct when M ¼ 105, and (b) nodal distribution, without
ent and with local refinement in every duct for the ‘‘weak” nodes.
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symmetrically about origin. Since the applied magnetic field is in the x-direction, the problem is described from Eqs. (2.5)
and (2.6). On the conducting portion @B

@n ¼ 0 is taken.
In Figs. 13 and 14 we present velocity and magnetic field contours for M ¼ 1000;/ ¼ p

2 ; L ¼ 0:2;0:5; or 0:7 in a rectangu-
lar duct without local refinement. Results are in good accordance with the corresponding ones in [18,19].

Case 4: Duct with partly insulating, partly conducting walls, under the influence of an oblique magnetic field
In this case the MHD flow problem is subjected to an externally oblique magnetic field having a positive angle u with the

y-axis and is described from Eqs. (2.7) and (2.8). Once again, the duct has a rectangular cross section jxj 6 1; jyj 6 1ð Þwith the
boundary conditions u ¼ B ¼ 0 applied on the walls. Moreover, the rectangular duct has a conducting portion on x = 0 line for
a length L symmetrically about origin. The problem is described from Eqs. (2.7) and (2.8). On the conducting portion @B

@n ¼ 0 is
assumed.

In Figs. 15–18 velocity and magnetic field contours are presented for M ¼ 1000;/ ¼ p
3 ;

p
4, and L ¼ 0:2;0:5; or 0:7 in a rect-

angular duct without local refinement.
4.2. Large values of Hartmann number and irregular duct

The MHD duct problem Eqs. (2.5) and (2.6) or, equivalently, Eqs. (2.7) and (2.8) can be solved in pipes with cross-sections
of rectangular, circular, elliptical, or even any arbitrary type. In Figs. 19 and 20 the equivelocity lines and the induced mag-
netic field lines for large values of Hartmann number, M ¼ 104, for / ¼ p

2 and L = 0.2 and 0.5 in a rectangular duct are pre-
sented, without local refinement. Local refinement procedures (Fig. 21(a)) were used for Hartmann number M ¼ 105 and
/ ¼ p

2, for a pipe with a rectangular cross-section (Fig. 22).
Indeed, an automated procedure for node refinement is proposed, based on a strong-form error mapping approach. More

specifically, nodes on which the error of the calculated field property is above a user-defined threshold are extracted and
surrounded by additional nodes, which are added with a predefined formulation; overall (Fig. 21(b)), an approach which ulti-
mately converges to the solution of the governing equations with a desired accuracy. The refining method reduces the com-
putational cost and time considerably, while leading to increasingly accurate and significantly stable results. The procedure
is fully automated and robust.

Following, results are presented for circular, elliptical and arbitrary duct where M ¼ 50 or 200;/ ¼ p
2 and B ¼ 0 on the

boundaries. The results, where it is possible to be compared, are in very good agreement with those in [18,19,22]. The afore-
mentioned geometries are irregular and, the nodal distribution inevitably can not be regular. Thus, following a procedure
developed in [26], the regular nodal distribution of Type-I is embedded at the prescribed geometry, ensuring the conver-
gence and the stability of the discrete harmonic operator. Defining the methodology for the construction of a regular grid
of Type-I we address the following steps. Initially, the spatial dimensions of the geometry are defined. Following, a regular
grid containing the geometry is obtained. Finally, the grid is conformed into the boundaries of the geometry (Fig. 23). Atten-
tion should be taken, such that no degenerated nodes on the boundary exist.

For the circular cross section duct, Table 3 gives a comparison between exact [31], FEM [22], BEM [23] and our MPCM
results in a circular region with center at the origin, unit radius, and M ¼ 5. One can see that the MPCM results using 622
nodes are more accurate than the relative FEM ones by using 54 elements and 37 nodes. In Figs. 24 and 25 we present
equivelocity lines and induced magnetic field lines for M = 50 or 200, and / ¼ p

2. Moreover, in Figs. 26 and 27 we present
equivelocity lines and induced magnetic field lines for M = 50 or 200, and / ¼ p

2 when the duct is elliptical.
Fig. 22. Equivelocity lines and induced magnetic field lines for M ¼ 105;/ ¼ p
2 and L ¼ 0:5 in rectangular duct with local refinement, (u,

max = 4.009132E�05, min = 0 and B, max = 2.00469E�05, min = �2.00469E�05).
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Additionally, a pipe flow with an arbitrary cross section is presented. The parametric curve that represents the cross sec-
tion is
x ¼ r cos ðhÞ;
y ¼ r sin ðhÞ;
with r ¼ Rþ gR cosðmhÞ and R ¼ 0:5; g ¼ 0:1;m ¼ 8 and 0 6 h 6 2p.
Fig. 23. Type-I nodal distribution and the final grid geometry oriented for the circular, elliptical and arbitrary cross-section duct.



Table 3
Circular duct (u,�B values for M = 5.

Variable x y FEM 37n, 54e BEM 36n, 36e FEM 609n, 192e BEM 300n, 300e Exact (Gold [12]) MPCM

u 0.0 0.0 0.1571 0.1522 0.1530 0.1530 0.1530 0.1530
1/3 0.0 0.1532 0.1458 0.1466 0.1466 0.1467 0.1466
2/3 0.0 0.1313 0.1152 0.1165 0.1165 0.1165 0.1165
0.0 2/3 0.0942 0.0904 0.0918 0.0918 0.0918 0.0918

B 0.0 0.0 0 0 0 0 0 0.0000
1/3 0.0 0.0457 0.0403 0.0407 0.0407 0.0407 0.0407
2/3 0.0 0.0768 0.0611 0.0624 0.0624 0.0624 0.0624
10 0.0 0 0 0 0 0 0.0000

Fig. 24. Equivelocity lines and induced magnetic field lines for M ¼ 50 and / ¼ p
2 in circular duct without local refinement.

Fig. 25. Equivelocity lines and induced magnetic field lines for M ¼ 200 and / ¼ p
2 in circular duct without local refinement.
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As the Hartmann number M increases, boundary layers are formed close to the walls of the channel. This behavior can be
observed from the Figs. 28 and 29 where equivelocity lines and induced magnetic field lines are presented for M = 50 or 200,
and / ¼ p

2, when the duct cross section is arbitrary.
As the previous results suggest, the MPCM scheme applied here is accurate, stable and efficient, since the results are fairly

close to the analytical solutions, whereas an increase of the number of nodes at specific parts of the domain (adaptation pro-
cedures) yield more accurate results, with the CPU run-time (of the code execution) remaining relatively low (Table 4).

In view of the run time of the meshless methods considered, the shape functions are not pre-defined and they must be
constructed once, before the numerical solution of the resulting algebraic system. Thus, in our in-house code, the numerical
procedure is primarily decomposed into two parts. Initially, the construction of the shape functions takes place, and then the
solution of the resulting linear system is addressed. At the following table, Table 4, the CPU time (in seconds) for the



Fig. 26. Equivelocity lines and induced magnetic field lines for M ¼ 50 and / ¼ p
2 in elliptical duct without local refinement.

Fig. 27. Equivelocity lines and induced magnetic field lines for M ¼ 200 and / ¼ p
2 in elliptical duct without local refinement.
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Fig. 29. Equivelocity lines and induced magnetic field lines for M ¼ 200 and / ¼ p
2 in arbitrary duct without local refinement.

Fig. 28. Equivelocity lines and induced magnetic field lines for M ¼ 50 and / ¼ p
2 in arbitrary duct without local refinement.

Table 4
CPU run-time for the MPCM scheme.

Number of nodes Shape functions (s) Linear system (s)

2601 21.17 1.03
6561 60.98 3.03
12,321 180.76 5.34
30,976 400.46 51.95
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prescribed number of nodes is shown. The hardware characteristics used for this benchmarking are trivial, such as a CPU
Pentium IV, 2.4 Hz with 2 GB RAM. It should be pointed out that the shape functions are only updated locally for the new
nodes inserted and the surrounding nodes affected by the local support domains, thus minimizing the run-time of the shape
function creation step significantly.

5. Conclusions
In the present study, a stable meshless point collocation method (MPCM) is developed for the solution of MHD duct
problem equations with either fully insulating walls, or partially insulating and partially conducting walls. The MPCM have
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several key advantages over traditionally FEM, FDM, or BEM methods, such as the following; it requires neither domain nor
surface mesh discretization, thus avoiding various topological, connectivity and dimensional difficulties of the meshing pro-
cedures; it does not involve numerical integration, while it retains a relative ease of implementation; the formulation is sim-
ilar for 2D and 3D problems, and for time-dependent problems (time-varying point distributions), as well; and finally it is
cost-effective due to the man-power reduction involved for the meshing steps. The main problem of these MFree techniques
are some global or local stability issues at boundaries sites or internal points of increased complexity. In the present formu-
lation, a stable MLS meshless point collocation method is used to discretize the system-governing equations. The turning
point in using consistent MLS-MPCM methods which avoid the stability issues systematically is the mathematical validation
of the convergence and the accuracy of their implementation on flow and diffusion problems [32]. These recently validated
techniques are used here to obtain stable solutions of MHD problems. Local point refinement scheme adopted in this work
uses an error indication based on the local error residuals. The adaptive procedures for additional nodes insertion around
nodes of low accuracy are applied in a consistent manner. Numerical examples are given, which demonstrate the fact that
the proposed adaptive meshfree method can obtain efficient and stable solutions of desired accuracy at any configuration
studied. The coupled MHD equations are convection-dominated for large values of Hartmann number. Thus, the solution
is obtained for values of Hartmann number up to 105 using refined nodal distribution as M increases. This significantly high
value of M has not been attained with previous BEM or FDM solutions. Furthermore, the numerical results presented here are
obtained using second order polynomials as approximations basis, in contrast with the sophisticated bubble-functions used
at the Finite Element method procedure. All the well-known characteristics of the MHD flow in ducts of arbitrary cross-sec-
tions at practically any Hartmann number can be systematically recovered with the MLS Meshless Point Collocation Method
reported here.
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